BOCEJ

СЧЕТЧИК - РАСХОДОМЕР ЭЛЕКТРОМАГНИТНЫЙ ВИРС-М

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ ПАСПОРТ

Счетчики – расходомеры электромагнитные ВИРС-М, производства ООО "ВОГЕЗЭНЕРГО", г. Минск Республика Беларусь (ВҮ), зарегистрированы в Государственном Реестре средств измерений Республики Беларусь за № РБ 03 07 6017 16.

Счетчики - расходомеры соответствует требованиям СТБ EN 1434-2011 и СТБ ISO 4064-2007, ТУ BY 101138220.016-2016

Предприятие «Вогезэнерго» не несет ответственность за ущерб любого рода, возникший в результате использования счетчиков, включая прямые, косвенные, случайные, присуждаемые в качестве наказания и прочие убытки.

СОДЕРЖАНИЕ

1	Назначение и область применения	2
2	Основные технические характеристики	4
3	Метрологичские характеристики	10
4	Комплектность	10
5	Принцип действия	11
6	Маркировка и пломбирование	11
7	Меры безопасности	12
8	Монтаж	13
9	Прядок работы	15
10	Поверка	15
11	Правила хранения и транспортирования	15
12	Технические данные расходомера	16
13	Свидетельство о приемке	16
14	Гарантии производителя	17
15	Сведения о поверках, ремонтах	17
	приложения	
A	Габаритные, установочные и присоединительные размеры	18
Б	Указания по монтажу	19
В	Внешний вид клемм подключения	22

1 НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

- 1.1 Счетчик расходомер электромагнитный ВИРС-М предназначен для измерения объема и объемного расхода жидкости, протекающей через его проточную часть, и, преобразования этих величин в унифицированные частотный, импульсный, токовый и интерфейсные электрические сигналы.
- 1.2 Счетчики-расходомеры могут применяться для коммерческого и технологического учета количества горячей и холодной, в том числе питьевой воды, теплоносителя, сточных вод, в т.ч. акустически непрозрачных, с содержанием механических примесей, любых электропроводных технологических жидкостей не вызывающих коррозию частей расходомера с параметрами указанными в п 1.3.
 - 1.3 Допускаемые параметры измеряемых жидкостей:
 - температура измеряемой среды от 0° C до 150° C;
 - удельная электропроводимость от 2х10⁻² до 10 См/м;
 - содержание механических примесей не более 3%;
 - полное заполнение трубопровода;
 - давление среды, не более 2.5МПа.
- 1.4 Область применения счетчиков расходомеров: узлы учета воды, тепла, источники теплоты, тепловые пункты, очистные сооружения, узлы учета различных жидкостей и растворов в технологических производственных линиях, в составе теплосчетчиков и счетчиков воды.
- 1.5 Счетчики расходомеры ВИРС-М выпускаются в сериях 1XXX, соответствующих СТБ ISO 4064-2007, и, 2XXX соответствующих СТБ EN 1434-2011, ГОСТ 28723-75.

Обозначение счетчика-расходомера ВИРС-М при заказе:

Тип счетчика	
Номинальный диаме 15 – 200;	ETP DN, MM:
Исполнение корпуса С – сэндвич СК– сэндвич к Ф – фланцевы ФК–фланцевы Снж. Фнж – не	сороткий
Номинальное давлен	
Степень защиты:	55 - IP55; 57 - IP57
Модуль индикации:	И - с модулем индикации О - модуль отсутствует
Токовый выход:	420 – (420) мА 000 – отсутствует
	232 – RS232; 485 – RS485
Серия:	1000; 1100; 1300; 1500 2000; 2100; 2300; 2500
	ка:
	025 - 0,25 % 050 - 0,5 % 100 - 1,0 % 200 - 2,0 %
Вес выходного импу	ульса:
	10-0.01 л/имп 11-0.10 л/имп 12-1.00 л/имп 13-10.00 л/имп 14-100.0 л/имп

2 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

2.1 Основные технические характеристики счетчиков - расходомеров приведены в таблицах 1 - 4.

Таблица 1

Таоли					
Ce	рии	1000, 2000	1100, 2100	1300, 2300	1500, 2500
Типораз-	сэндвич DN	15–100	15–100	_	_
меры	Фланец DN	15–200	15–200	15–150	15–150
Класс точн	ости	2	1	0,5	0,25
Температург зон среды, ^с		0 – 150	0 – 150	0 - 90	0 – 90
Номиналь-	сэндвич	1,6	1,6	_	_
ное давление, МПа	фланец	1,6(2,5)	1,6(2,5)	1,6(2,5)	1,6(2,5)
Выходной с	игнал	Импульс- ный	Импульс- ный	Импульс- ный	Частотный Импульсный
Токовый выход (с на- ложенным HART про- токолом -опция)		Опция	Опция	+	+ (HART)
Реверс		_	+	+	+
Интерфейсы стандарт- ные, (опциональные)		RS 232	RS 232 (RS485, MBus)	RS 232 (RS485, MBus)	RS 232 (RS 485, MBus)
Степень защиты обо- лочек IP,стандартно, (опция)		55 (57)	55 (57)	57	57
Индикация, архив		_	Опция	Опция	Опция
Входной импеданс электродов, Ом		10 ⁹	10 ⁹ /10 ¹²	10 ⁹ /10 ¹²	10 ¹²
Напряжение питания, В		24±10%	24±10%	24±10%	24±10%
Потребляем ность, ВА	ая мощ-	4,5	4,5/7,0	4,5/7,0	7,0

2.2 Номинальные диаметры, соответствующие им минимальные, переходные, постоянные и максимальные расходы для серий расходомеров 1XXX соответствующих «СТБ ISO 4064-1-2007 Счетчики воды» представлены в таблице 2.

Таблица 2

	Расход, Q, м ³ /ч					Pacx	од, Q,	м ³ /ч		
DN	Q _{мин}	Qперех	Q _{номин}	Qпост	Q _{макс}	Q _{мин}	Q _{nepex}	Q _{номин}	Qпост	Q _{макс}
MM	(Q_1)	(Q_2)	(Qn)	(Q_3)	Q_4	(\mathbf{Q}_1)	(Q_2)	(Qn)	(Q_3)	Q_4
1	2	3	4	5	6	7	8	9	10	11
		Cep	ия 10	000			Ce	рия 11	.00	
15	0,010	0,016	2,8	4	5,0	0,020	0,032	2,8	4	5,0
20	0,016	0,025	4.4	6,3	7,9	0,032	0,050	4,4	6,3	7,9
25	0,025	0,04	7,0	10	12,5	0,050	0,080	7,0	10	12,5
32	0,040	0,06	11,2	16	20,0	0,08	0,13	11,2	16	20,0
40	0,06	0,1	17,5	25	31.3	0,13	0,20	17,5	25	31.3
50	0,10	0,16	28,0	40	50.0	0,20	0,32	28,0	40	50.0
65	0,16	0,25	44,1	63	78.8	0,32	0,50	44,1	63	78.8
80	0,25	0,4	70,0	100	125	0,50	0,80	70,0	100	125
100	0,40	0,6	112,0	160	200	0,80	1,3	112,0	160	200
150	0,60	1,0	175,0	250	312,5	1,3	2,0	175,0	250	312,5
200	1,0	1,6	280,0	400	500	2,0	3,2	280,0	400	500
		Cep	оия 13	800			Ce	рия 15	500	
15	0,050	0,080	2,8	4	5,0	0,2	0,3	2,8	4	5,0
20	0,079	0,126	4.4	6,3	7,9	0,3	0,50	4.4	6,3	7,9
25	0,13	0,20	7,0	10	12,5	0,50	0,8	7,0	10	12,5
32	0,20	0,32	11,2	16	20,0	0,8	1,3	11,2	16	20,0
40	0,31	0,50	17,5	25	31.3	1,3	2,0	17,5	25	31.3
50	0,50	0,80	28,0	40	50.0	2,0	3,2	28,0	40	50.0
65	0,79	1,26	44,1	63	78.8	3,2	5,0	44,1	63	78.8
80	1,30	2,0	70,0	100	125	5,0	8	70,0	100	125
100	2,0	3,2	112,0	160	200	8	13	112,0	160	200
150	3,1	5,0	175,0	250	312,5	13	20	175,0	250	312,5
200	5,0	8,0	280,0	400	500	20	32	280,0	400	500

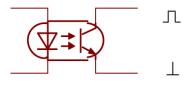
2.3 Номинальные диаметры, соответствующие им минимальные, переходные, постоянные и максимальные расходы для серий расходомеров 2XXX соответствующих «СТБ EN 1434-2011 Теплосчетчики», ГОСТ 28723-75 представлены в таблице 3.

Таблица 3

	Расход, Q, м ³ /ч					$Q, M^3/Q$	 Л	
DN				0				0
MM	Q_{MUH}	Qперех	Q _{пост}	Q _{макс}	Q _{мин}	Qперех	Q _{пост}	Q _{макс}
1	(qi)	(qt)	(qp)	(qs)	(qi)	(qt)	(qp)	(qs)
1	2	3	4	5	6	7	8	9
		Серия	2000	·		Серия	1 2100	·
15	0,013	0,25	3,2	6,3	0,025	0,25	2,5	6,3
20	0,020	0,40	5,0	10	0,040	0,40	4,0	10
25	0,03	0,64	8,0	16	0,064	0,64	6,4	16
32	0,050	1,0	12,5	25	0,10	1,0	10,0	25
40	0,08	1,6	20,0	40	0,16	1,6	16,0	40
50	0,13	2,5	31,5	63	0,25	2,5	25,2	63
65	0,20	4,0	50,0	100	0,40	4,0	40,0	100
80	0,32	6,4	80,0	160	0,64	6,4	64,0	160
100	0,50	10	125,0	250	1,0	10	100,0	250
150	0,8	16	200,0	400	1,6	16	160,0	400
200	1,3	25	315,0	630	2,5	25	252,0	630
		Серия	2300			Серия	2500	
15	0,063	0,25	3,2	6,3	0,25	-	2,5	6,3
20	0,10	0,40	5,0	10	0,40	-	4,0	10
25	0,16	0,64	8,0	16	0,64	-	6,4	16
32	0,25	1,0	12,5	25	1,0	-	10,0	25
40	0,40	1,6	20,0	40	1,6	-	16,0	40
50	0,63	2,5	31,5	63	2,5	-	25,2	63
65	1,0	4,0	50,0	100	4,0	-	40,0	100
80	1,6	6,4	80,0	160	6,4	-	64,0	160
100	2,5	10	125,0	250	10	-	100,0	250
150	4,0	16	200,0	400	16	-	160,0	400
200	6,3	25	315,0	630	25	-	252,0	630

- 2.4 Расходомер формирует выходные сигналы:
- импульсный сигнал (активный или пассивный), пропорциональный объему жидкости;
- активный токовый сигнал, пропорциональный объемному расходу жидкости (опция);
 - сигнал обратного направления потока «Реверс».
 - 2.5 Возможные значения веса выходных импульсов, л/имп:

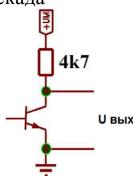
Для расходомеров DN 15 - 32 - **0,01**; 0,1; 1; 10; Для расходомеров DN 40 - 100 - **0,1**; 1; 10; Для расходомеров DN 150, 200 - **1;** 10; 100.


Значение веса импульса выходного импульсного сигнала указывается в разделе 11 настоящего паспорта и на этикетке расходомера.

- 2.6 Токовый выходной сигнал (активный) $I_{\text{вых}}$, пропорциональный объемному расходу, имеет следующие параметры:
 - значение тока $I_{\text{вых}}$ (при q = 0), мА 4;
 - значение тока $I_{\text{вых}}$ (при $q = q_x$), мА 20;
 - сопротивление нагрузки, Ом, не более 600.

Значение расхода q_x при заводской настройке расходомера может быть установлено любым отличным от нуля.

- 2.7 Импульсный выход и выход сигнала обратного направления потока «Реверс» имеют идентичные схемы управления и параметры. Эти выходы могут быть гальванически развязанными и гальванически не развязанными. Напряжение питания выходного каскада импульсного выхода может быть установлено 3В или 24В.
- 2.8 Гальванически **развязанный** пассивный импульсный выход и выход сигнала «Реверс» сформированы оптопарами. Перемычки X16, X17, X18 сняты (приложение В).
 - максимальное значение напряжения транзистора, В
 30B;
 - максимальное значение тока транзистора, мА
 40мА;
 - длина сигнальной линии связи, м
 15м.


Схема выходного каскада

2.8.1 Гальванически **неразвязанный** активный импульсный (частотный) выход и выход сигнала «Реверс» сформированы оптопарами, но выходные транзисторы оптопар перемычками X16, X17, X18 гальванически связываются с шиной питания и общим проводом расходомера. Перемычки X16, X17, X18 установлены.

– напряжение U _{вых} (транзистор закрыт), В	3(24);
– напряжение U _{вых} (транзистор открыт),В, не более	0,5;
$-$ напряжение $U_{\text{выхРев}}$ (прямой поток), B	3B;
$-$ напряжение $U_{\text{выхРев}}$ (обратный поток), B, не более	0,5;
– длина сигнальной линии связи, м, не более	400.

Схема выходного каскада

 $2.8.2\,$ В **штатном** режиме работы расходомера выходной импульсный сигнал имеет форму меандра. При этом время $t_{\text{имп1}}$, в течении которого уровень выходного сигнала находится в состоянии логической 1 равно времени $t_{\text{имп0}}$, в течении которого уровень выходного сигнала находится в состоянии логического 0.

- значение времени $t_{\text{имп1}}$, $t_{\text{имп0}}$

не более 1 с.

В **нештатном** режиме работы время $t_{\text{имп0}}$, в течении которого уровень выходного сигнала находится в состоянии логического нуля превышает время нахождения выходного сигнала в этом же состоянии в штатном режиме.

- значение времени $t_{\scriptscriptstyle \text{ИМП}0}$

не более 2 с.

- 2.9 Время установления рабочего режима расходомера не более 30мин.
- 2.10 Длины прямых участков трубопровода до и после расходомера представлены в таблицах 1 и 2 приложения Б.
 - 2.11 Материалы составных частей расходомера приведены в таблице 4. Таблица 4

Электроды	AISI316L(X17H13M2T), 06XH28MДT, Ti
Проточная часть	AISI 304(08X18H10)
Футеровка проточной части	Фторопласт Ф-4
Корпус расходомера	Ст.3, Ст.20, AISI304, AISI316
Корпус электронного блока	ABS пластик, силумин ADC-12

2.12 Массы расходомеров исполнения «сэндвич» (С) и фланцевого (Ф) исполнения представлены в таблице 5.

Таблица 5

DN,	Macca,	Габаритные и	DN,	Macca,	Габаритные и
	не более,	установочные	•	не более,	установочные
MM	КГ.	Размеры	MM	КГ.	размеры
15C	2,0		15Ф	3,1	
20C	2,0		20Ф	3,2	
25C	2,0		25Ф	3,6	
32C	3,2		32Ф	4,2	
40C	3,9		40Ф	5,3	
50C	3,9	Рис. A1(a)	50Ф	6,8	Рис. А1(б)
65C	4,5		65Ф	11,0	
80C	5,4		80Ф	14,0	
100C	5,9		100Ф	18,0	
_	_		150Ф	31,0	
_	_		200Ф	34,0	

- 2.13 Габаритные и установочные размеры расходомеров представлены в приложении А.
 - 2.14 Условия эксплуатации расходомеров:
 - температура измеряемой жидкости от 0 °C до плюс 150 °C;
 - температура окружающей среды от плюс 5 °C до плюс 55 °C;
 - относительная влажность воздуха не более 95 %;
 - атмосферное давление от 84 кПа до 106кПа.
- 2.15 По условиям окружающей среды расходомеры соответствуют классу исполнения В по СТБ EN 1434-1-2011 и СТБ ISO 4064-1-2007.
- 2.16 По устойчивости к электромагнитным возмущениям расходомеры соответствуют классу Е1 по СТБ ISO 4064-1-2007.
- 2.17 По устойчивости к воздействию синусоидальных вибраций высокой частоты преобразователи соответствуют исполнению L1 по ГОСТ 12997 и ГОСТ Р 52931.
- 2.18 Степень защиты оболочек расходомера соответствует IP55 или IP57 по ГОСТ 14254 -2015.
- 2.19 Средний срок службы не менее 12 лет, наработка на отказ не менее 75 000 часов.

3 МЕТРОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ

3.1 Пределы допускаемой относительной погрешности измерения объема расходомером не превышают значений, указанных в таблице 6.

Таблица 6

Серия Диапазон из- расходомера мерения расхода		Пределы допускаемой относительной погрешности, $\delta_{\rm f},\%$	
1000	$Q_2 \le Q \le Q_4$	± 2 (для $t \le 30$ °C) ± 3 (для $t > 30$ °C)	По СТБ ISO 4064-1-2007
	$Q_1 \le Q < Q_2$	±5	
1100	$Q_2 \le Q \le Q_4$	± 1 (для $t \le 30$ °C) $\pm 1,5$ (для $t > 30$ °C)	
	$Q_1 \leq Q < Q_2$	±3,5	По
1300	$Q_2 \le Q \le Q_4$	± 0,5	ТУ ВҮ 101138220.016-2016
1300	$Q_1 \le Q < Q_2$	± 1,0	
1500	$Q_1 \le Q < Q_4$	± 0,25	
	$q_t \le q \le q_p$	± 2	
2000	$q_i \le q < q_t$	$\pm (2 + 0.02 q_p /q),$ но не более $\pm 5 \%$	По СТБ EN 1434-1-2011
	$q_t \le q \le q_p$	± 1	110 C1D LIN 1434-1-2011
2100	$q_i \le q < q_t$	$\pm (1 + 0.01 \text{ q}_{\text{p}}/\text{q})$ но не более $\pm 3.5 \%$	
2300	$q_t \le q \le q_p$	± 0,5	
2300	$q_i \le q < q_t$	$\pm (0.5 + 0.005 q_p/q)$	По ТУ ВҮ 101138220.016-2016
2500	$q_i \le q < q_p$	± 0,25	2010

3.2 Погрешность преобразования объемного расхода в токовый сигнал 4-20 мА — не более 0,2%.

4 КОМПЛЕКТНОСТЬ

Таблица 7

Наименование и условное обозначение	Количество
Счетчик - расходомер электромагнитный ВИРС-М	1
Руководство по эксплуатации. Паспорт «Счетчик - расходомер электромагнитный ВИРС-М»	1

5 РАБОТА И УСТРОЙСТВО

Принцип измерения расхода расходомером ВИРС-М основан на явлении электромагнитной индукции — при прохождении электропроводящей жидкости через магнитное поле в ней наводится ЭДС, пропорциональная средней скорости потока, то есть, расходу. ЭДС наводится между двумя электродами, расположенными диаметрально в поперечном сечении расходомера. ЭДС от электродов подается на вход электронного блока, усиливается и преобразуется в выходные сигналы.

6 МАРКИРОВКА И ПЛОМБИРОВАНИЕ

6.1 Содержимое маркировки представлено в таблице 8. Таблица 8

т иолици о	
по СТБ ISO 4064-2007	по СТБ ЕN 1434-2011
- знак утверждения типа;	- наименование или торговая марка из-
- наименование или торговая	готовителя;
марка изготовителя;	- тип, серия, месяц и год выпуска, се-
- серия, месяц и год изготов-	рийный номер;
ления, серийный номер;	-температурный диапазон (Θ_{\min} и Θ_{\max});
- значение расхода Q ₃ и	- значения расхода $(q_i, q_p \text{и} q_s)$;
$Q_3/Q_{1,}$ класс потери давле-	- направление потока;
ния Δр;	- номинальный размер DN;
- направление потока;	-максимально допустимое рабочее дав-
- номинальный размер DN;	ление PS в барах;
- максимально допускаемое	- номинальное давление PN;
давление;	- пределы погрешности;
- температурный класс;	- степень защиты по ГОСТ 14254;
- пределы погрешности;	- вес выходных импульсов;
- вес выходных импульсов;	- класс по условиям окружающей среды;
- напряжение питания;	- напряжение внешнего питания;
- потребляемая мощность.	- потребляемая мощность;

- 6.2 После изготовления гарантийной пломбой (наклейкой) изготовителя пломбируется винты крепления печатных плат расходомера;
- после поверки оттиском клейма (наклейкой) поверителя пломбируется свободные винты крепления печатных плат или защитная панель печатной платы расходомера;
- после монтажа навесными пломбами принимающей организации пломбируется крышка корпуса электронного блока преобразователя (рис. 1 приложения A).

7 МЕРЫ БЕЗОПАСНОСТИ

- 7.1 При эксплуатации преобразователя соблюдать ТКП 427-2012 "Правила техники безопасности при эксплуатации электроустановок" и ТКП 181-2009 "Правила технической эксплуатации электроустановок потребителей" для электроустановок напряжением до 1000 В, ТКП 458-2012 «Правила технической эксплуатации теплоустановок и тепловых сетей потребителей», ТКП 459-2012 «Правила техники безопасности при эксплуатации теплоустановок и тепловых сетей потребителей».
- 7.2 Источниками опасности при монтаже и эксплутации расходомера являются электрический ток и измеряемая жидкость, находящаяся под давлением и при температуре до $150\,^{\circ}\mathrm{C}$.
- 7.3 К работе по монтажу и обслуживанию допускаются лица, имеющие квалификацию по работе с электроустановками до 1000 В, изучившие техническую документацию преобразователя и прошедшие инструктаж по технике безопасности.
- 7.4 Перед включением расходомер необходимо заземлить, для чего использовать желто-зеленый провод сечением не менее 1,5 мм². При работе не следует одновременно касаться расходомера и металлических заземленных конструкций.
 - 7.5 Безопасность эксплуатации обеспечивается:
 - герметичностью соединения расходомера с трубопроводом;
 - изоляцией электрических цепей расходомера;
 - надежным креплением расходомера при монтаже на объекте;
 - надежным заземлением расходомера.
- 7.6 Устранение дефектов, замена, присоединение и отсоединение сигнальных кабелей, должны производиться при отключенном электрическом питании.
- 7.7 Устранять дефекты монтажа расходомера допускается только убедившись в отсутствии жидкости под давлением в трубопроводе.

8 МОНТАЖ, ПОДГОТОВКА К РАБОТЕ

8.1 Расходомер может быть установлен на горизонтальном, вертикальном или наклонном трубопроводе при условии, что весь объем первичного преобразователя в рабочих условиях заполнен измеряемой жидкостью (см. рис. 1 приложения Б).

Внимание: Расходомеры исполнения «сэндвич» с номинальным диаметром DN15, DN20 и DN40 укомплектовываются нестандартными монтажными фланцами. Диаметр проходного отверстия таких фланцев соответствует трубе с Ду 15, 20 и 40мм соответственно, остальные размеры соответствуют стандартным размерам фланцев DN25 (для расходомера DN15 и DN20) и DN50 (для расходомера DN40) по ГОСТ 12820.

Монтажные фланцы должны быть соединены входящим в комплект поставки медным проводом с корпусом расходомера и заземлены (см. рис. 2 приложения Б).

При установке в горизонтальном трубопроводе - отклонение оси электродов от горизонтальной линии - не более 10°.

Прямые участки трубопровода должны быть соосны с расходомером (отклонение не более ± 4 % от номинального диаметра).

Внутренний диаметр прямых участков трубопроводов не должен отличаться от номинального диаметра расходомера более чем на 4 %. Непараллельность монтажных фланцев не должна превышать 0,5 мм.

Во внутренней полости прямых участков не должно быть выступающих фрагментов, заусенцев, наплывов (застывших капель металла), оставшихся после выполнения сварочных и монтажных работ.

Сварочные работы на трубопроводе производить до установки на трубопровод расходомера. При выполнении сварочных работ рекомендуется использовать монтажный узел производства ООО «Вогезэнерго».

- 8.2 Электрический монтаж производится согласно приложения В).
- 8.2.1 Электрические цепи расходомера (питания и сигнальные) допускается подключать раздельными кабелями либо одним общим кабелем. Прокладка раздельных кабелей в разных коробах (металлорукавах) с разнесением в пространстве не требуется, т.к. сигнальная линия и линия питания (24В постоянного тока) не оказывают взаимного влияния. Подключение электрических цепей одним кабелем или двумя раздельными не влечет за собой изменения технических характеристик расходомера.

Прокладка кабелей в стальных трубах (металлорукавах) требуется только для защиты кабелей от механических повреждений и экранирования от внешних помех.

Для подключения напряжения питания (+24B) использовать двухжильный кабель (провод, шнур) с сечением жил не менее 0.35 мм^2 (КММ $2 \times 0.35 \text{мм}^2$, ШВВП $2 \times 0.5 \text{мм}^2$ или аналогичный).

Для подключения сигнальных цепей использовать двухжильный кабель в экране с сечением жил не менее $0.35~{\rm mm}^2$ (КММ2х0.35, МКЭШ $2{\rm x}0.35$ или аналогичный).

При подключении электрических цепей расходомера **одним** четырехжильным экранированным кабелем можно использовать кабели КММ 4x0,35мм², МКЭШ 4x0,35мм² или аналогичные.

- 8.2.3 **Не допускается** прокладка кабелей расходомера в одном коробе с силовыми кабелями или рядом с ними. Следует учитывать **возможное влияния на погрешност**ь расходомера помех от находящихся вблизи кабелей подключенных к преобразователям частоты.
- 8.2.4 Назначение контактов клеммного разъема (рисунок В1 и В2 приложения В):
 - + клемма положительного полюса источника питания 24В;
 - клемма отрицательного полюса источника питания 24В;
 - __ клемма импульсного выхода;
 - ⊥ клемма общего провода;
 - R клемма выхода «Реверс».

Для подключения заземления использовать медный провод желтозеленого цвета сечением не менее $1,5~{\rm mm}^2.$

- 8.2.5 Кабели монтировать и крепить к конструкциям без натяжения. Кабель должен иметь пространственное расположение, исключающее стекание по нему воды в кабельный ввод расходомера. Для этой цели рекомендуется перед кабельным вводом формировать «петли» из кабеля длиной 150 200 мм.
- 8.2.6 Цепи питания расходомера защищены от «переполюсовки». Импульсный выход **не защищен** от перегрузки по напряжению. **Не допускается** подавать на клеммы импульсного выхода напряжение питания расходомера от внешнего источника.

9 ПОРЯДОК РАБОТЫ

- 9.1 Подать напряжение питания (+24В) на электронный блок расходомера, обеспечить проток измеряемой жидкости через его измерительный канал.
- 9.2 По состоянию диагностических светодиодов убедиться, что расходомер работает в штатном режиме (таблицы приложения В) или устранить диагностированные неисправности.
- 9.3 К импульсному выходу расходомера (приложение В) подключить считывающее устройство. Токовый выход (при наличии), подключить к соответствующему измерителю тока.
- 9.4 По показаниям индикатора расходомера или считывающему устройству проверить показания расхода измеряемой среды.

10 ПОВЕРКА

- 10.1 Метрологическая поверка расходомера осуществляется согласно методики поверки счетчика-расходомера ВИРС-М. Методика поверки поставляется отдельно.
 - 10.2 Межповерочный интервал не более 48 месяцев.

11 ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ

- 11.1 Избегать механических повреждений и ударов.
- 11.2 Хранить прибор в сухом отапливаемом помещении при температуре не ниже +5 °C.
- 11.3 Расходомер в транспортной таре выдерживают при транспортировании в закрытом транспорте по ГОСТ 12997:
- воздействие температуры окружающей среды от минус 25 до плюс 55 $^{\circ}\mathrm{C}$;
- воздействие относительной влажности до (95 ± 3) % (при температуре 35 °C);
- 11.1 При выполнении погрузочно-разгрузочных работ не допускается прибор бросать, кантовать и т.п.

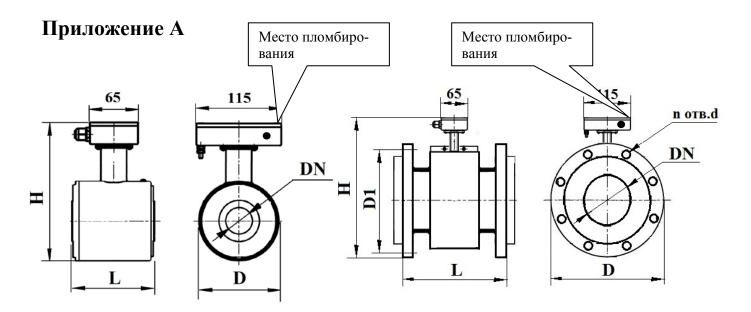
12 ТЕХНИЧЕСКИЕ ДАННЫЕ РАСХОДОМЕРА

Заводской номер расходомера ВИРС-М	
Номинальный диаметр DN,мм	
Корпус ППР и материал	
Материал электродов	
Номинальное давление PN, МПа	
Степень защиты оболочек (IP) расходомера	
Токовый выход	
Постоянный расход $q_p(Q_3)$, $M^3/4$	
Серия расходомера ВИРС-М	
Интерфейс	
Вес выходного импульса, л/имп	

13 СВИДЕТЕЛЬСТВО О ПРИЕМКЕ

Расходомер-счет	чик электромагнитный В	ИРС-М №		
серия к эксплуатации.	_ соответствует техничес	ким требованиям	и год	цен
Подпись ОТК		Дата приемки		
$M.\Pi.$	«	>>	20	Γ

14 ГАРАНТИЯ ИЗГОТОВИТЕЛЯ


- 14.1 Изготовитель гарантирует соответствие счетчиковрасходомеров техническим характеристикам изложенным в разделах 2 и 3, при соблюдении потребителем условий монтажа и эксплуатации, хранения и транспортирования.
- 14.2 Гарантийный срок эксплуатации 48 месяцев со дня ввода в эксплуатацию.

Изготовитель: **ООО** «ВОГЕЗЭНЕРГО» 220053 Республика Беларусь, г. Минск, ул.Орловская, 40A-41 Тел./факс: **+375 17 239-21-71** многоканальный

15 СВЕДЕНИЯ О ПОВЕРКАХ, РЕМОНТАХ.

15.1 Сведения о первичной и периодической поверках, вводе в эксплуатацию, ремонтах.

Дата	Наименование работы	Кто проводил	Подпись и оттиск клейма

а) исполнение «сэндвич» серии 1000, 2000.

б) фланцевое исполнение серии 1000, 2000

	Размеры, мм, не более			
DN, MM	L	D	Η	
15	95	75	129	
20	95	75	129	
25	105	75	145	
32	95(125)	88	158	
40	110(145)	108	182	
50	110(145)	108	182	
65	175	130	204	
80	190	140	214	
100	220	160	234	

DN,	Размеры, мм, не более					
MM	L	D	D1	Н	n	d
15	150	95	65	150	4	14
20	150	105	75	160	4	14
25	150	115	85	170	4	14
32	200	135	100	190	4	14
40	200	145	110	210	4	18
50	200	155	125	215	4	18
65	200	175	145	225	4	18
80	250	195	160	235	4	18
100	250	215	180	250	8	18
150	300	280	240	305	8	23
200	350	350	295	365	12	27

Рисунок А1. Габаритные, установочные и присоединительные размеры расходомеров ВИРС-М серий 1000, 2000.

Приложение Б УКАЗАНИЯ ПО МОНТАЖУ

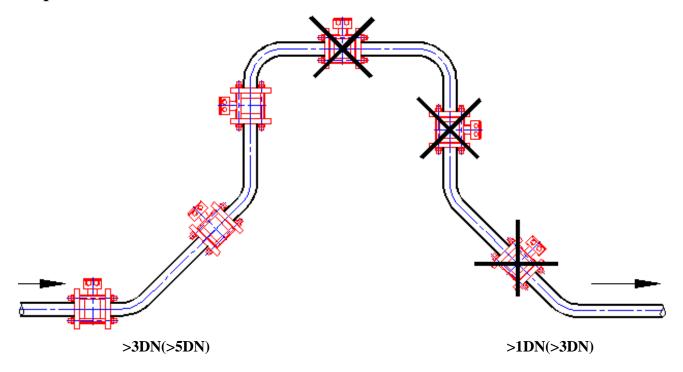


Рисунок Б1. Допустимые положения расходомера при монтаже.

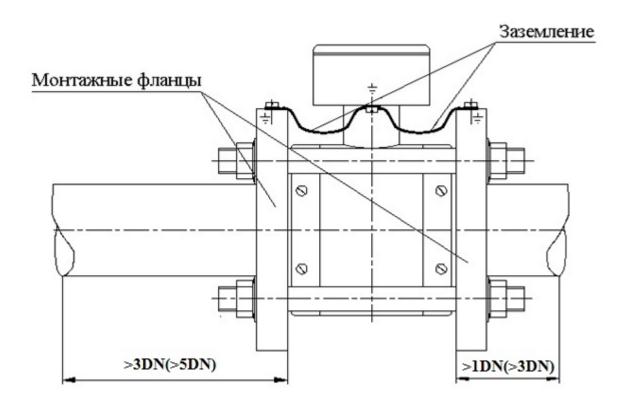


Рисунок Б2. Схема заземления расходомера исполнения «сэндвич».

Продолжение приложения Б Требования к прямолинейным участкам для расходомеров ВИРС-М класса 1 и (2).

Таблица 1

Тип гидравлического	Минимальная длина прямого участка, DN		
тип тидравлического	До	После	
L≥3/Jy L≥1/Jy	отвод 2D (не более 2 отводов в одной плоскости)		2(1)
L≥5Дy L≥3Дy R < 3 Дy	Отвод 3D (2 и более отводов в разных плоскостях	10(5)	5(2)
L ≥ 3,Ity L ≥ 1,Ity	Полностью открытый полнопроходный шаровый кран	0	0
L≥3Дy L≥1Дy	Диффузор и конфузор с конусностью 30°	5(3)	2
	Диффузор и конфузор с конусностью до 10°	0	0
	Гильза ТС; Фильтр грязевик;	5	2
L≥ 5Jly L≥ 3Jly	Открытая задвижка (не шаровая).	5	2
L≥10 Дy L≥5 Дy	Насос; Тройник; Клапан регулирующий;	10	5
L≥ 5 Jly L≥ 5 Jly	Частично открытая задвижка.	10	5

Продолжение приложения Б Требования к прямолинейным участкам для расходомера ВИРС-М класса 0,25 и 0,5. Таблица 2

Тип гидравлического	Минимальная длина прямого участка, DN		
типтидривии теского	До	После	
$L \ge 3 \frac{1}{1} \frac{1}{2} \frac{1}{2$	Отвод 2D (не более 2 отводов в одной плоскости)		5
L≥5Дy L≥3Дy R<3Дy	Отвод 3D (2 и более отводов в разных плоскостях	10	5
$L \ge 3 J I y$ $L \ge 1 J I y$	Полностью открытый полнопроходный шаровый кран	5	2
L≥3Дy L≥1Дy	Диффузор и конфузор с конусностью 30°	10	5
	Диффузор и конфузор с конусностью до 10°	0	0
	Гильза ТС; Фильтр грязевик;	5	3
L≥ 5/Iy L≥ 3/Iy	Открытая задвижка (не шаровая).	5	3
L≥5 Лy L≥5 Лy	Насос; Тройник Клапан регулирующий;	10	5
L ≥ 10 Jly L ≥ 5 Jly D L	Частично открытая задвижка.	10	5

Приложение В

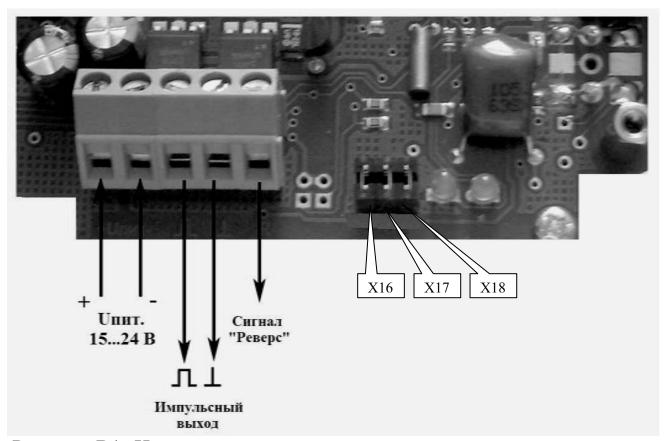


Рисунок В1. Назначение контактов клеммной колодки расходомера ВИРС-М серии 1000, 1100, 2000, 2100.

Диагностическая таблица для расходомера ВИРС-М серий 1000,1100, 2000, 2100.

Режим	Норма	Rev	Трубопровод пуст	Неисправность аналоговой части	Неисправность цифровой час- ти
зеленый	+/-	+/-	I	ı	-
красный	-	+/-	+	+	+/-
Импульсный выход	ИМП	ИМП	1	1	0
Выход «Реверс»	1	0	1	1	1
Токовый выход	4-20мА	4-20мА	4мА	2мА	2мА

^{+ -}светится постоянно; +/- -мигает; - -не светится; имп - импульсы; 1- логическая единица; 0-логический ноль.

Продолжение приложения В

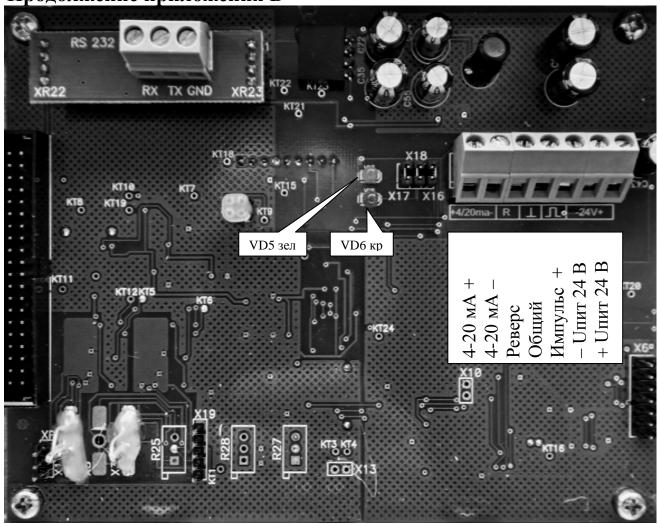


Рисунок В.2 Вид печатной платы расходомера ВИРС-М серии 1300, 2300, с клеммами внешних подключений и диагностическими светодиодами.

Диагностическая таблица для расходомера ВИРС-М серии 1300, 2300.

Режим	Норма	Rev	Трубопро- вод пуст	Неисправность аналоговой части	Неисправность цифровой части
VD5 зеленый	+/-	+/-	I	I	_
VD6 красный	_	+/-	+	+	+/-
Импульсный выход	ИМП	имп	1	1	0
Выход «Реверс»	1	0	1	1	1
Токовый выход	4-20мА	4-20мА	4мА	2мА	2мА

⁺ -светится постоянно; +/- -мигает; - -не светится; имп - импульсы;

¹⁻ логическая единица; 0-логический ноль.